Recovering non-negative and combined sparse representations
نویسندگان
چکیده
The non-negative solution to an underdetermined linear system can be uniquely recovered sometimes, even without imposing any additional sparsity constraints. In this paper, we derive conditions under which a unique non-negative solution for such a system can exist, based on the theory of polytopes. Furthermore, we develop the paradigm of combined sparse representations, where only a part of the coefficient vector is constrained to be nonnegative, and the rest is unconstrained (general). We analyze the recovery of the unique, sparsest solution, for combined representations, under three different cases of coefficient support knowledge: (a) the non-zero supports of non-negative and general coefficients are known, (b) the non-zero support of general coefficients alone is known, and (c) both the non-zero supports are unknown. For case (c), we propose the combined orthogonal matching pursuit algorithm for coefficient recovery and derive the deterministic sparsity threshold under which recovery of the unique, sparsest coefficient vector is possible. We quantify the order complexity of the algorithms, and examine their performance in exact and approximate recovery of coefficients under various conditions of noise. Furthermore, we also obtain their empirical phase transition characteristics. We show that the basis pursuit algorithm, with partial non-negative constraints, and the proposed greedy algorithm perform better in recovering the unique sparse representation when compared to their unconstrained counterparts. Finally, we demonstrate the utility of the proposed methods in recovering images corrupted by saturation noise.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملConvolutive Non-negative Matrix Factorisation with Sparseness Constraint
Discovering a parsimonious representation that reflects the structure of audio is a requirement of many machine learning and signal processing methods. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. We present an extension to NMF that is convolutive and forces a sparseness const...
متن کاملRecovery of Block-Sparse Representations from Noisy Observations via Orthogonal Matching Pursuit
We study the problem of recovering the sparsity pattern of block-sparse signals from noise-corrupted measurements. A simple, efficient recovery method, namely, a block-version of the orthogonal matching pursuit (OMP) method, is considered in this paper and its behavior for recovering the block-sparsity pattern is analyzed. We provide sufficient conditions under which the block-version of the OM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 26 شماره
صفحات -
تاریخ انتشار 2014